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Measuring information
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Transmission of 6 symbols requires 6 questions (bits)

011001



word composed by 6 
characters



Reduction to YES or NO 
answers

Alice Bob

ginger is it “a”?
Yes

No



Reduction to YES or NO 
answers

Alice Bob

ginger is it “b”?
Yes

No



Reduction to YES or NO 
answers

Alice Bob

ginger is it “c”?
Yes

No

Inefficient!
Maximum of 26 questions, 13 on average (if characters outcome are i.i.d.)



Reduction to YES or NO 
answers

ABCDEFGHIJKLMNOPQRSTUVWXYZ
is it lesser than “N”?

ABCDEFGHIJKLMNOPQRSTUVWXYZ
is it lesser than “F”?

ABCDEFGHIJKLMNOPQRSTUVWXYZ
is it lesser than “J”?

ABCDEFGHIJKLMNOPQRSTUVWXYZ
is it lesser than “H”?

ABCDEFGHIJKLMNOPQRSTUVWXYZ

after 5 questions we correctly individuate the character



Minimum number of 
questions

• 2# questions = 26 (for english alphabet) 

• # questions = log2(26) = 4.7 expected number of 
questions 

• for a word composed by 6 character 6*4.7 = 28.2 
questions needed



Reduction to YES or NO 
answers

• Rationale: reduce at each iteration the size off the 
set of one half 

• Build a decision tree where the leafs of the tree are 
the available symbols 

• Maximum number of questions equal to the height 
of the tree



Telegraphy
• Telegraphy (from Greek: tele 

"at a distance", and graphein 
"to write") 

• Long distance transmission of 
textual/symbolic messages 

• Method used for encoding the 
message be known to both 
sender and receiver 

• Even e-mail is an example of 
telegraphy



Morse code



Measuring information
• s: symbols (binary, decimal, …) 

• n: message length 

• sn: possible messages 

• The problem is to estimate the quantity of 
information relative to a message



Ralph Hartley
• R. Hartley was an electronics 

researcher 

• Contributed to the 
foundations of information 
theory 

• The hartley, a unit of 
information equal to one 
decimal digit, is named after 
him



Ralph Hartley
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Ralph Hartley



A mathematical theory of 
communication by 
Claude Shannon



 Information source

• How is an information source to be described 
mathematically? 

• How much information in bits per second is 
produced in a given source?



How is an information source to 
be described mathematically?

In telegraphy, for example, the messages to be 
transmitted consist of sequences of letters. These 
sequences, however, are not completely random. In 
general, they form sentences and have the statistical 
structure of, say, English. The letter E occurs more 
frequently than Q, the sequence TH more frequently 
than XP, etc. The existence of this structure allows 
one to make a saving in time (or channel capacity) by 
properly encoding the message sequences into 
signal sequences.
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Morse code



How is an information source to 
be described mathematically?

We can think of a discrete source as generating the 
message, symbol by symbol. It will choose 
successive symbols according to certain probabilities 
depending, in general, on preceding choices as well 
as the particular symbols in question. A physical 
system, or a mathematical model of a system which 
produces such a sequence of symbols governed by 
a set of probabilities, is known as a stochastic 
process.
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Stochastic process which 
generates a sequences of symbols
Using the same five letters (ABCDE) let the probabilities be 
.4, .1, .2, .2, .1, respectively, with successive choices 
independent. A typical message from this source is then: 

• AAACDCBDCEAADADACEDA 

• E A D C A B E D A D D C E C A A A A A D



Stochastic process which 
generates a sequences of symbols
A more complicated structure is obtained if successive symbols are not 
chosen independently but their probabilities depend on preceding 
letters. 

In the simplest case of this type a choice depends only on the preceding 
letter and not on ones before that. 

The statistical structure can then be described by a set of transition 
probabilities pi(j), the probability that letter i is followed by letter j



Choice, Uncertainty and 
Entropy

• We have represented a discrete information source as a 
Markov process. Can we define a quantity which will 
measure, in some sense, how much information is 
“produced” by such a process, or better, at what rate 
information is produced? 

• Suppose we have a set of possible events whose 
probabilities of occurrence are p1 ; p2 ;…; pn. These 
probabilities are known but that is all we know concerning 
which event will occur. Can we find a measure of how 
much “choice” is involved in the selection of the event or 
of how uncertain we are of the outcome?



Choice, Uncertainty and 
Entropy

where the constant K merely amounts to a choice of a 
unit of measure



Choice, Uncertainty and 
Entropy

“My greatest concern was what to call it. I thought of 
calling it ‘information’, but the word was overly used, 
so I decided to call it ‘uncertainty’. When I discussed 
it with John von Neumann, he had a better idea. Von 
Neumann told me, ‘You should call it entropy, for two 
reasons. In the first place your uncertainty function 
has been used in statistical mechanics under that 
name, so it already has a name. In the second place, 
and more important, nobody knows what entropy 
really is, so in a debate you will always have the 
advantage.”



Example: tossing a fair coin
• Total number of possible outcomes: N = 2 

• probability heads: p(H) = 0.5 

• probability tails: p(T) = 0.5 

• Shannon’s entropy: H = -(1/2)log(1/2) - (1/2)log(1/2) = 
-(1/2)(-1) - (1/2)(-1) = 1/2+1/2 = 1 bit

• 1 bit of information gained 

• 1 bit of uncertainty reduced



Example: tossing a double 
head coin

• Total number of possible outcomes: N = 1 

• probability heads: p(H) = 1 

• Shannon’s entropy: H = -(1)log(1) = -(1)(0) = 0 bits

• 0 bits of information gained 

• 0 bits of uncertainty reduced



Shannon entropy 
characteristics

• Continuity: the measure should be continuous, so 
that changing the values of the probabilities by a 
very small amount should only change the entropy 
by a small amount. 

• Symmetry: the measure should be unchanged if 
the outcomes are re-ordered

Hn (p1, p2, . . .) = Hn (p2, p1, . . .)



Shannon entropy 
characteristics

• Additivity: the amount of entropy should be 
independent of how the process is regarded as 
being divided into parts 
 
 
if p1 and p2 are independent

Hn(p1, p2) = Hn(p1) +Hn(p2)



Shannon entropy 
characteristics

• Maximum: the measure should be maximal if all 
the outcomes are equally likely (uncertainty is 
highest when all possible events are equiprobable) 
 
 
 
For equiprobable events the entropy should 
increase with the number of outcomes
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Entropy in the case of two 
possibilities

• Entropy in the case of two possibilities with 
probabilities p and q = 1 - p



Choice, Uncertainty and 
Entropy

• Let’s suppose that all symbols are equiprobable 
and independent with probability pi=1/q (q 
symbols) 

the entropy of a message can be written as
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Choice, Uncertainty and 
Entropy

• If the number of symbols is equal to 2 (binary system) and 
assuming K=1 

the entropy of the message coincide with its length

H = KN log(q) = N log(2) = N
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Shannon entropy

• Quantitative measure of information 

• Quantitative information of “surprise”



Unit measure
• Depending on the base (b) of the logarithm (and 

constant K) the unit measure of information 
changes: 

• b = 2 -> bit 

• b = e -> nat 

• b = 10 -> dit (or hartley)



Estimating the information 
entropy of the written English text

• 27 characters (26 letters + space). Hence N = 27 

• We assume all character equally probable: p(each 
char) = 1/27 

• The information entropy per character is therefore: 
H = -27(1/27)log(1/27) = log(27) = 4.75 bits



Estimating the information 
entropy of the written English text

E highest frequency

Z lowest frequency



Redundancy in written 
english text

• Redundancy: nothing more than the number of 
constraints imposed on the text of the English 
language. 

• For example, the letter Q is always followed by U, 
and we also have rules such as "I before E except 
after C", and so on.



Estimating the information 
entropy of the written English text

• According to Shannon, considering redundancy 
and contextually the entropy per character of 
english text was estimated to be: 

H between 0.6 and 1.3 bits 

H ≈ 1 bit



Estimating the information 
entropy of the written English text

• Equally probable characters 

H = 4.75 bits

• Considering redundancy, contextually etc.. 

H ≈ 1 bit



Redundancy

• Redundancy = number of bits to encode a 
message - number of bits of Shannon’s information 

• Redundancy in a message is a measure of the 
compressibility of the message



Loss-less data compression 

• To reduce the number of bits used to encode a 
message by identifying and eliminating statistical 
redundancy. 

• The exact original data can be reconstructed from 
compressed data



Redundancy

More redundancy 

More predictable 

Less entropy per encoded symbol 

Higher its compressibility



Compress data
• Extract redundancy from the message 

• Encoding the same amount of Shannon’s 
information by using less bits 

• More Shannon’s information per encoded symbol 

• Total Shannon’s information preserved 

• Compressed message less predictable



ZIP example



Shannon’s Entropy
• Shannon’s entropy represents a lower limit for 

lossless data compression: the minimum amount of 
bits that can be used to encode a message without 
loss 

• A lossless data compression scheme cannot 
compress messages, on average, to have more 
than one bit of Shannon’s information per bit of 
encoded message



Example of coding: ASCII 
Code

• 1 byte (8 bits) per character 

• Very inefficient 

• Theoretical optimum: 1 bit per 
character 

• In theory there exist a code 8 
times more efficient than ASCII 
code



Huffman code

• Variable length code 

• Exploit character frequencies 

• Similar to moorse code



Huffman code



Shannon’s entropy

• Shannon's entropy is a measure of uncertainty, of 
unpredictability, and also a measure of information 
content, of potential information gain. 

• Shannon’s entropy can also represent a lower limit 
for lossless data compression: the minimum 
amount of bits that can be used to encode a 
message without loss.



Shannon’s entropy

• Also note that with this definition, more information 
content has nothing to do with its quality. So in this 
sense, a larger amount of Shannon's entropy does 
not necessarily imply a better quality of its content 

• Encoding bits and Shannon’s bits have different 
meanings 



Entropy: 
an application



Vigenère cipher
• 1587: Vigenère Cipher 

• Polyalphabetic: one to many 
relationship  

• Example 

• Encrypt: lamp  

• Keyword: ubc 

• Ciphertext: fboj 

Tabula recta



Vigenère cipher

key           ABCDAB CD ABCDA BCD ABCDABCDABCD
plaintext   CRYPTO IS SHORT FOR CRYPTOGRAPHY
ciphertext CSASTP KV SIQUT GQU CSASTPIUAQJB



Redundancy, Entropy and 
Security

• Shannon gave the 
mathematical description of a 
perfect secrecy based on the 
maximum entropy of a 
message 

• Perfect secrecy cannot be 
cracked if used correctly



One Time Pad
The unbreakable code



One Time Pad: requirements
• The encryption-key has at least the same length as 

the message 

• The OTP should consist of truly random numbers 

• Precisely two copies of the OTP should exist 

• The OTP should only be used once 

• Both copies of the OTP are destroyed immediately 
after use



One Time Pad: distribution

• The major problem with OTPs 
however, is their distribution. A 
unique set of OTP booklets 
needs to be issued and 
distributed to each individual 
spy or agent abroad. As the 
OTP was destroyed 
immediately after use, 
sufficient and timely supply of 
new OTPs had to be 
guaranteed

The key is either a secret message!



One Time Pad

tkxkgyyitsjdxzc

hgtrgffegehsjxs Meet at ten o clock

hgtrgffmfehsjxs Meet at two o clock

cgxhnrurppipjpk Read the red books

ciphertext key/pad plaintext


